SEction:
 NAME:

Directions: Consider the following scenarios and carefully read each question. You are encouraged to write legible and organized solutions on a clean sheet of paper. Note that vectors must have a direction and all answers must have appropriate units and $\frac{1}{4 \pi \epsilon_{0}} \approx$ $9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}$.

Consider three point charges arranged in a line. Charge $q_{1}=.125 C$ is located at the origin. Charge q_{3} is equal in magnitude, but opposite in sign to q_{1} and is located four centimeters away from q_{1}. Charge $q_{2}=2 C$ lies halfway between q_{1} and q_{3}.
(3 points) What is the net force on q_{3} ? What is the electric field due to q_{1} and q_{2} at the location of q_{3} ? (Suppose q_{3} no longer exists)
(3 points) What is the net force on q_{2} ? What is the electric field due to q_{1} and q_{3} at the location of q_{2} ? (Suppose q_{2} no longer exists)
(2 points) What is the minimum potential energy of the dipole created by q_{1} and q_{3} if it is placed in a uniform and parallel electric field of magnitude $E=5.0 \times 10^{5} \mathrm{~N} / \mathrm{C}$?

Conceptual Question (2 points) Why does charge tend to build up on the surface of an insulator and not a conductor? Explain.

