## SEction:

## NAME:

Directions: Consider the following scenarios and carefully read each question. You are encouraged to write legible and organized solutions on a clean sheet of paper. Note that vectors must have a direction and all answers must have appropriate units and $\frac{1}{4 \pi \epsilon_{0}} \approx$ $9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}$.

Consider two point charges $q_{1}$ and $q_{2}$ of unknown charges separated by a distance of three centimeters in vacuum along the x -axis.
(3 points) Suppose the two point charges are two electrons subject to an electrostatic force and a gravitational force between them. Show that the electrostatic force is much more powerful by considering their ratio. Note: $G \approx 6.67 \times 10^{-11} \mathrm{~N} \times \mathrm{m}^{2} / \mathrm{kg}^{2}, m_{e} \approx 9 \times 10^{-31} \mathrm{~kg}$, and $q_{\text {electron }}=e \approx 1.6 \times 10^{-19} C$.
(3 points) Suppose $\left|q_{1}\right|=\left|q_{2}\right|=|q|$. What is $|q|$ if the electric force on $q_{1}$ is 16 Newtons, directed away from $q_{2}$ ?
(2 points) Suppose $q_{1}=-q_{2}=10 C$. What is the net torque on the dipole if it were perpendicular to a uniform electric field of magnitude $E=5.0 \times 10^{5} \mathrm{~N} / \mathrm{C}$ ?

Conceptual Question (2 points) How can I charge a metal (conducting) ball by induction?

