SEction:

NAME:

Directions: Consider the following scenarios and carefully read each question. You are encouraged to write legible and organized solutions on a clean sheet of paper. Note that vectors must have a direction and all answers must have appropriate units and $\frac{1}{4 \pi \epsilon_{0}} \approx$ $9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}$.

Consider three point charges lying in the xy plane in vacuum. Charge $q_{1}=2 C$ is located three centimeters to the left of the origin along the x-axis. Charge $q_{2}=4 C$ is located six centimeters to the right of q_{1} along the x-axis. Finally, charge $q_{3}=-6 C$ is located four centimeters above the origin along the y-axis.
(3 points) What is the net electric field at the origin?
(3 points) What is the net electric force on q_{3} ?
(2 points) Suppose charges q_{1} and q_{2} combine to form a new charge q_{12} at the origin so that q_{12} is equal and opposite to q_{3}. What is the magnitude of the electric dipole moment formed by q_{12} and q_{3} ? What is the net force on the dipole if it were placed in a uniform electric field of magnitude $E=5.0 \times 10^{5} \mathrm{~N} / C$?

Conceptual Question (2 points) Two lightweight metal spheres are each suspended by an insulating thread. If one sphere has a net positive charge, and the other is neutral, explain what happens if they are close together but do not touch.

